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LETTER TO THE EDITOR 

Solution to the spherical Raman-Nath equation 

C T Lee 
Department of Physics, Alabama A & M University, Normal, Alabama 35762, USA 

Received 26 September 1985 

Abstract. The spherical Raman-Nath equation, which describes the stimulated Compton 
scattering, is transformed into a Fokker-Planck type equation for ‘diffusion’ over the 
spherical surface. This is done by using the Q representation in the phase space of the 
atomic coherent states. With the quantum electron recoil as the perturbation parameter, 
a perturbative solution is obtained up to arbitrarily high order, hence approaching an exact 
solution. 

The stimulated Compton scattering ( s a )  is of great current interest because it is the 
fundamental process in a free-electron laser. Dattoli and Renieri (1984) have shown 
that the scs can be described by the following difference-differential equation: 

i - C, ( t )  = (-2n8 + n 2 & )  C, ( t )  + A [ ( N  - n )( n + l)]”* Cn+ ( t )  
d 
d t  

+ A [ ( N -  n + l)n]1’2Cn-,(r) (1) 
where C,(r) is the probability amplitude that n photons are propagating forward at 
time t, N is a constant integer, A is the coupling constant, and 8 and E are parameters 
related to the initial electron momentum and the quantum electron recoil respectively. 

Equation (1) has been recognised as a generalised Raman-Nath (RN)  equation by 
Bosco et a1 (1984). Hence these authors call it the spherical R N  equation. The original 
R N  equation was derived to describe light diffraction by ultrasound (Raman and Nath 
1937). The RN type equations are important because they appear in a large number 
of physical phenomena, as pointed out by Bosco and Dattoli (1983). 

Bosco et al (1984) have obtained an exact solution to equation (1) under the initial 
condition 

Cn(0) = 8n,O (2) 
and under the simplifying assumption that E = 0. The n 2 E  term, because of its quadratic 
dependence on n, is the main obstacle in solving all RN type equations. Recently, the 
present author (Lee 1985) has obtained a perturbative solution of equation (1) to the 
first order of E.  In this letter, we try to push the perturbative solution to arbitrarily 
high order of E, approaching an exact solution. 

It has been mentioned by Bosco er a1 (1984) that equation (1) can be viewed as 
describing the time evolution of the atomic coherents (ACS) (Arecchi et a1 1972) driven 
by external fields. So it is quite natural to use ACS as the basis for constructing the 
solution to equation (1). We specifically choose the Q representation of ACS in the 
phase space for our purpose. 
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The density matrix to be constructed from the solution of equation (1) are of the 
following form: 

N N  

~ ( t )  = C C C*,(t)cn(t)In>(mI 
n=O m=O 

where the In) are photon number states. The ACS are defined as 

(3) 

and the probability distribution over the spherical surface in the Q representation is 
defined as 

x (cos 0/2)*~-"-"(sin e/,),+, e-'("-")@ ( 5 )  

where we have used equations ( 3 )  and (4) and the orthonormality of the In). By the 
definition of equation ( 5 )  we see that Q( 8,4, t )  is non-negative. It is the phase space 
distribution function corresponding to the antinormal ordering of the creation and 
annihilation operators. Similar representation has been used to describe superfluore- 
scence (Lee 1984). 

Using equation (1) in equation ( 5 ) ,  we obtain the following partial differential 
equation 

{alar + 2A sin 4 a / a e  + (-28 + 2h cot e COS 4 )  a /a4  
+&[sin e a / a e + N ( i - c o s  e)]a/a4}Q(e, 4, t ) = O  ( 6 )  

which is of the Fokker-Planck type. 

parameter and under the initial condition 
We look for a perturbative solution to equation ( 6 )  with E as the perturbation 

obtained by using equation (2) in equation ( 5 ) .  Let 

fi0=a/at+2r\  sin+a/a13+(-28+2A c o t e c o s 4 ) a / a 4  (8) 
8, = ~ ( 1  -COS e)  a l a 4  +sin e a2/ae a4 (9) 

Q(e,4,t)=Qo(e,4,t)+&QI(e,4,  t )+&2Q2(e ,4 ,r )+ . . . .  (10) 

800,+1(e, 4, t)+fiIQ,(e,4, t ) = O .  (11) 

and 

Then substitution of equations (8)-( 10) into equation ( 6 )  yields the recurrence relation 

As long as 1 << N, the solution to equation (1 1) can be written in the form 



Letter to the Editor L1141 

where the F and G must satisfy the following equations: 

b o F  = 0 

and 

boG= -[(l -COS e )F+s in  e aF/ae] aF/a+. 

They can be expressed in terms of the spherical harmonics up to the first order and 
the second order, respectively, as follows: 

F =fo+fl( t )  cos 0 +fi( t )  sin e cos 4 +f3( t )  sin 8 sin 4 (14a) 

and 

G = g,( t )  cos 8 + g2( t )  sin e cos 4 + g3( t )  sin e sin 4 + g4( t)(3 cos’ e - 1) 

+ g5( t )  sin e cos e cos 4 + g6( t )  sin e cos e sin 4 + g7( t )  sin’ e cos 2 4  

+ gs( t )  sin2 e sin 24. (146) 

The coefficients in equation (14a) can be obtained easily by solving equation (13a) 
with the initial condition equation (7) as follows: 

(15a) f -1 

f 1 = $ [ ( 6 / w ) ’ + ( h / w ) ’ c o s 2 w t ]  (156) 

f2= (A6/2w2)[1 -COS 2wt] (15c) 

0 - 2  

and 

f3 = (A/2w)  sin 2wt 

where we have adopted the notation 

w = ( A 2  + 6’)’’’. (16) 

Substituting equations ( 1 5 4 4  15d) into equation ( 1 4 4  and using it in equation (13 b), 
we can then solve for G to obtain the coefficients in equation (14b) as follows: 

g, = -(h46/32w6)(9-8 cos 2wt -cos 4wt - 12wt sin 2wt) 

g2=  ( A / 6 ) g l + ( A 3 / 1 6 w 4 ) ( 3 - 2 c o s  2wt-cos4wt-6wt sin2wt) 

g , = ( h 3 S / 1 6 w S ) ( s i n 2 w t + s i n 4 w t - 6 w t  cos 2wt) 

g4= (A4S/64w6)[3 -8 cos 2wt+5 cos 4wt+4wt(sin 2wtfs in  4wt)l 

g, = (4h/6)g4- (A3/8w4)[ 1 - 3 COS 2wt $2 COS 4wt 

+ wt(sin 2wt + 2 sin 4wt)l 

g6= -(h36/16ws)[5 sin 2wt-4sin4wt+~wt(cos 2wt+2 cos 4wt)l 

g7=-g4+(h26/32w4)(1-4cos2wt+3 cos4wti4wt sin4wt) 

g 8 = ( h / 2 6 ) g 6 + ( h 2 / 3 2 w 2 ) ( 4 s i n 2 w t - 3  sin4wt+4wt cos4wt). 

In the application of scs to the problem of free-electron lasers, we typically have 
N >> 1. Therefore equation (12) is a very accurate approximation to a large number 
of leading terms in the series of equation (10). Then we have a very neat asymptotic 
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expression for the probability distribution 

o(e, 4, t ) = [ F * ( e ,  4, t ) + 2 N ~ G ( e ,  4, t ) ] N / 2 .  (18) 

This final result can be considered as an almost exact solution to the spherical R N  

equation. 
The detailed derivation and the implications of this solution will be published 

elsewhere. 

This work was supported by the Office of Equal Opportunity at the Lawrence Livermore 
National Laboratory under Contract No 738 1905. 
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